# Pt を数原子層電析した Ni 単結晶電極上の酸素還元反応

Paper

# The Oxygen Reduction Reaction on Single Crystal Electrodes of Ni Electrodeposited with a Few Pt Layers

#### 久米田 友明、木村 広人、星 永宏、中村 将志

Tomoaki Kumeda, Hiroto Kimura, Nagahiro Hoshi, Masashi Nakamura

#### 千葉大学 大学院工学研究科共生応用化学専攻

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University

概要: Ni 基本指数面上に Pt 数原子層を電析した電極 (Pt<sub>xML</sub>/Ni(*hkl*))及び Pt 修飾後に加熱処理を行った電極の酸素 還元反応 (ORR) 活性を調べた。Pt を 4 原子層修飾した Pt<sub>4ML</sub>/Ni(111) は高い ORR 活性を示し、0.9V(RHE) におけ る ORR 活性は Pt(111) の 3 倍を示した。しかし 0.6V(RHE) と 1.0V(RHE) の矩形波を 1000 サイクル印加する耐久 性試験により ORR 活性は 1/3 に低下した。一方、Pt<sub>4ML</sub>/Ni(111) に 650K で加熱処理を行った電極は加熱していない Pt<sub>4ML</sub>/Ni(111) と比較して更に ORR 活性が 1.7 倍向上した。また、1000 サイクルの耐久性試験後も ORR 活性の低下 は 10% 未満であった。Pt<sub>4ML</sub>/Ni(111) の加熱処理により、Pt-skin や Pt 合金層などの安定な Pt-rich シェル層を形成 したことで耐久性が向上したと考えられる。

**Abstract:** Electrocatalytic activities toward the oxygen reduction reaction(ORR) were investigated on the low index surfaces of a Ni substance modified with a few Pt layers( $Pt_{xML}/Ni(hkl)$ ) by electrochemical deposition and then thermal annealing. The ORR activity at 0.9 V(RHE) of the  $Pt_{4ML}/Ni(111)$  is three times as high as that of Pt(111), however the activity is reduced to one-third after 1000 potential cycles between 0.6 V(RHE) and 1.0 V(RHE). The ORR activity and durability are enhanced by thermal annealing of  $Pt_{4ML}/Ni(111)$ . The ORR activity is 1.7 times as high as that without annealing and the decrease of the activity is less than 10% after 1000 potential cycles. The annealing process stabilizes the Pt-rich shell such as Pt skin or Pt alloy layers on Ni(111).

Key Words: Oxygen Reduction Reaction (ORR), Single crystal electrode, Surface alloy, Ni, Pt skin

### 1. はじめに

固体高分子形燃料電池の開発において、コストや資源量 の問題から Pt 使用量の低減は重要な課題である。非 Pt 系 微粒子に数原子層の Pt で被覆したコアシェル触媒は Pt の 使用量を減らすことが可能である。触媒の耐久性を考慮 しコア材料には化学的に安定な貴金属が広く用いられて おり、特に Pd や PdAu 合金をコアとした Pt 触媒が Pt/C 標準触媒よりも高い ORR 質量活性や耐久性を示すことが 報告されている<sup>1).2)</sup>。このような Pt をシェルとしたコ アシェル触媒の ORR 活性は Pt-コア原子間の電子的な相 互作用の影響を強く受ける。コアシェルモデル電極とし て Pt 単原子層を種々の金属基板に修飾した電極の ORR 活性と電子状態との関係が調べられている。Pt の d 軌道 の状態密度は基板原子からの摂動を受け変化し、d-band center と ORR には密接な関係があることが明らかにされ た<sup>3)</sup>。また Pt と異種金属との合金 (Pt 合金) についても ORR 活性と *d*-band center の相関が調査されており、特 に  $Pt_3Ni$  や  $Pt_3Co$  において高い ORR 活性を示すことが報 告された<sup>4)</sup>。

不均一系触媒の反応活性はその表面構造に強く依存す る。反応機構や活性サイトを理解するために、表面構造を 規整した単結晶基板を用いた研究が行われている。ORR 活性についても Pt 単結晶電極を用いて多くの報告例があ る<sup>5).6)</sup>。コアシェルモデル電極についても、Pt 単原子層 を修飾した Au、Rh、Ir 及び Pd 単結晶電極の ORR 活性が 調べられており、Pt/Pd(111) のみが Pt(111) よりも高い ORR 活性を示す<sup>3)</sup>。

Pt 合金単結晶電極上の ORR 活性も表面構造及び合金組 成に依存する<sup>7)-10)</sup>。Pt<sub>3</sub>Ni(111)の0.9Vにおける ORR 活性は Pt(111)の10倍を示し、また X 線回折やイオン散 乱分光により表面層の元素組成が明らかにされている。こ のように Pt-rich な合金や貴金属をコア基板とした研究が 多いが、卑金属を基板電極とした場合、酸化や溶解の問題 からコアシェル触媒として研究例は少ない。

高論文 Paper

本研究では、Ptを数原子層修飾したNi単結晶電極の ORR活性及び耐久性を評価した。耐久性向上のために加 熱処理を試みた。Pt合金の表面層の構造及び元素組成は 加熱処理によって変化することは知られている<sup>11).12)</sup>。Pt 合金を1000Kに加熱することでPt-richな表面(Pt-skin) が形成され、*d*-band center がシフトする。ORR活性の 向上だけでなく、表面が安定化し耐久性が向上することが 報告された<sup>11)</sup>。またNi単原子層を被覆したPt(111)単結 晶電極を加熱することで、Ni原子が内部にもぐりこみ最 表面にPt-skinを形成しORR活性を向上させる<sup>13)</sup>。

また、Pt-skin だけではなく、表面合金を形成する場合 もある。例えば、Pt(111)上にSnを修飾し加熱すること によりPtSn表面合金層が形成される。この表面は高いエ タノール酸化活性を示し、PtSn合金層中のSnの溶出も 抑えられる<sup>14)</sup>。このように加熱により表面層を安定化す ることにより卑金属基板においても高耐久性を実現できる 可能性がある。

# 2. 実験方法

#### 2.1 Ni 単結晶電極の作製

Ni(111)、Ni(100) 及びNi(110) 電極 (直径 2 ~ 4 mm) は以下の手順で作製した。まずNi線 (99.995%、1 mmø、 Furuuchi Chemical)の先端を誘導加熱炉 (HOTSHOT 5、Ambrell)を用いて溶融し単結晶を作製した。このと きNiの酸化を防ぐため、Ar(95%)+H<sub>2</sub>(5%)雰囲気で 加熱した。作製した単結晶の方位をX線背面反射ラウエ 法で決定した。図1に得られた (111) 配向のラウエパター ンを示す。各単結晶はダイヤモンド懸濁液を用いて機械研 磨することで単結晶電極を作製した。





#### 2.2 Pt 修飾及び加熱処理

Ni 単結晶表面を清浄化するために $H_3PO_4: H_2SO_4: H_2O$ が体積比で6:1:3の溶液中で電解研磨をした。 電解研磨は直流電源を用いて2極に定電圧7Vで30秒間 行った。その後、pH4に調製した $HClO_4$ 溶液中で洗浄、 Ar 飽和させた0.1 M  $HClO_4$ 中で還元電流が観測され始 める - 0.2 V(RHE) で10分間電位保持し、試料表面のNi 酸化被膜を十分に除去した。

Pt 修飾のため試料を Ar 飽和させた  $0.1 \text{ mM K}_2 \text{PtCl}_4$ + 0.1 M KOH 溶液に浸漬させ、 0.15 V(RHE)を印加し 電析させた。Pt の電析量は電気量から見積り、およそ 1-4 原子層を析出させた。加熱処理する場合は、試料を超純水で洗浄し Ar(95%)+H<sub>2</sub>(5%) 雰囲気で十分乾燥させた後、誘導加熱炉を用いて加熱した<sup>15)</sup>。

#### 2.3 ORR 活性・耐久性評価

ORR ボルタモグラムはハンギングメニスカス RDE 法 により測定した<sup>16)-18)</sup>。電位走査は + 0.05~+1.0V(RHE) の範囲を 0.010 Vs<sup>-1</sup>の速度で正方向スキャンさせ、電極 回転速度は 1600 rpm で行った。ORR 活性は Koutecky-Levich 式:  $1/j=1/j_k+1/j_L$ から求められる + 0.9V(RHE) における電流密度 $j_k$ で評価した<sup>19).20)</sup>。ここで j 及び $j_L$  は それぞれ総電流密度及び限界電流密度を示している。これ らの電流密度の算出には Ni 試料表面の幾何的断面積を用 いている。

耐久性試験は Ar 飽和させた 0.1 M HClO<sub>4</sub>中で + 0.6 V と + 1.0 V (RHE) で各 3 秒保持した矩形波を任意サイク ル印加することで行った<sup>21)</sup>。

## 3. 結果・考察

#### 3.1 Ar 雰囲気下におけるボルタモグラム

まず Ni 基板の面依存性や Pt の修飾量依存性を確認す るために H<sub>2</sub>SO<sub>4</sub>中におけるボルタモグラムを測定した。 Pt 4 原子層(1 原子層を 1 ML とする)を修飾した Pt<sub>4ML</sub>/ Ni(111)の0.05 M H<sub>2</sub>SO<sub>4</sub>中におけるボルタモグラムを図 2(A)に示す。1 サイクルでは0.1-0.6 V(RHE) に酸 化ピークが観測され、2 サイクル以降で徐々に減少した。 Ni 単結晶上では酸性条件下において0.3 V(RHE) 付近に Ni の酸化・溶解によるピークが観測されており<sup>22)</sup>、この 酸化電流は Pt で被覆されていない Ni 表面の酸化に帰属 される。電位サイクルにより、NiO などの不溶解性の Ni 酸化被膜が形成されるため、徐々に酸化電流は減少してい く。5 サイクル以降は、Ni の酸化に由来する電流は観測 されない。 図 2 (B) に Pt 修 飾 量 を 変 化 さ せ た Pt/Ni(111) の 0.05 M H<sub>2</sub>SO<sub>4</sub>中でのボルタモグラムを示す。いずれも5 回の電位サイクル後のものであり、Ni の酸化ピークは完 全に消失した。また 0.05 V (RHE) 以下に水素発生、0.05-0.35 V (RHE) に水素吸着 / 脱離、0.35-0.6 V (RHE) に 二重層電流、及び 0.6 V (RHE) 以上に OH 吸着 / 脱離が 観測され、Pt が被覆されていることがわかる。Pt を 4 ML 被覆した場合には 0.3 V (RHE) 付近に特徴的なピークが 観測された。修飾量を 4 ML 以上にしてもボルタモグラム に大きな変化は見られなかったため、以下の実験はすべて 修飾量を 4 ML に統一して行った。

Ni(100)及びNi(110)についても同様なボルタモグ ラム測定を行った。図2(C)に電位サイクル後のPt<sub>4ML</sub>/ Ni(*hkl*)の0.05 M H<sub>2</sub>SO<sub>4</sub>中におけるボルタモグラムを示 す。Ni(111)と同様にNi(100)及びNi(110)において も1サイクルでNiの酸化・溶解ピークが観測され、5サ イクル後には完全に消失した。ボルタモグラムでは0.05-



- 図2 Pt/Ni (*hkl*)のサイクリックボルタモグラム、電解液溶液: 0.05M H<sub>2</sub>SO<sub>4</sub>、走査速度:0.01 Vs<sup>-1</sup> (A)連続サイクル時におけるPt<sub>4ML</sub>/Ni (111)、(B)電位サイ クル処理後のPt<sub>xML</sub>/Ni (111)、(C)電位サイクル処理後の Pt<sub>4ML</sub>Ni (*hkl*)
- Fig. 2 Cyclic voltammograms of (A)  $Pt_{4ML}/Ni(111)$  during three successive potential cycles, (B)  $Pt_{xML}/Ni(111)$ after successive potential cycles, (C)  $Pt_{4ML}/Ni(hkl)$  after successive potential cycles in 0.05 M  $H_2SO_4$ . Scanning rate is 0.01 Vs<sup>-1</sup>.

0.35 V (RHE) の水素吸着 / 脱離領域に Ni 基板の表面構造 依存性はみられなかった。また Pt を 4 原子層修飾したに も関わらず 1 サイクルで Ni の酸化ピークが観測されたた め、Pt は完全に Ni 表面を覆っているのではなく島状に成 長していると考えられる<sup>15)</sup>。

Ni が表面に露出した場合、電位サイクルにより酸化・ 溶解し電極触媒として耐久性が低いことが予想される。そ こで、試料の加熱を試みた。まず  $Pt_{4ML}/Ni(111)$ を 650 K で加熱処理をした  $Pt_{4ML}/Ni(111)$ - 650 の 0.1 M HClO<sub>4</sub> 中 におけるボルタモグラムを図 3 (A) に示す。比較のため に加熱前の  $Pt_{4ML}/Ni(111)$ のボルタモグラムも示す。加熱 前に観測された 0.15 V (RHE)の Ni 酸化・溶解ピークは、 図 3 (A) の実線で示すように加熱後には観測されなかっ た。加熱処理は Ar + H<sub>2</sub>の還元雰囲気で行っているため、 加熱による表面酸化は起こっていない。従って、0.15 V (RHE) 付近の電流ピークの消失は、加熱処理により Pt ア イランドが熱拡散し Ni 表面を被覆したことを示唆してい る。

これらのボルタモグラムの電位サイクル後の結果を図 3(B)に示す。加熱前後のボルタモグラムにおいて0.3V (RHE)以下に水素吸着/脱離波、0.7V(RHE)以上で OH吸着/脱離波が観測された。加熱後は水素吸着/脱離 波の電気量は31%増加した。島状のPt原子がNi(111) 表面に均一に分散したためPtの電気化学的活性表面積 (ECSA)が増加したものと考えられる。



- 図3 Pt<sub>4ML</sub>/Ni (111)-650及びPt<sub>4ML</sub>/Ni (111)のサイクリックボルタ モグラム、電解液:0.1 M HCIO<sub>4</sub>、走査速度:0.05 Vs<sup>-1</sup> (A) 1サイクル、(B)電位サイクル処理後
- Fig. 3 Cyclic voltammograms of Pt<sub>4ML</sub>/Ni (111) and Pt<sub>4ML</sub>/Ni (111) -650 (A) at the first cycle, (B) after successive potential cycles in 0.1 M HCIO<sub>4</sub>. Scanning rate is 0.05 Vs<sup>-1</sup>.

#### 3.2 ORR 活性・耐久性評価

加熱前のPt<sub>4ML</sub>/Ni(*hkl*)の0.1 M HClO<sub>4</sub>中における ORR ボルタモグラムを図4(A)に示す。0.2 V(RHE)よ り負側の電位のORR 電流の減少は酸素から過酸化水素 への2電子還元反応が進行していることを示している<sup>5)</sup>。 0.9 V(RHE)におけるORR電流密度はPt<sub>4ML</sub>/Ni(100)≈ Pt<sub>4ML</sub>/Ni(110) << Pt<sub>4ML</sub>/Ni(111) << Pt<sub>4ML</sub>/Ni(111) – 650の 序列で増加した。Pt<sub>4ML</sub>/Ni(111)及びPt<sub>4ML</sub>/Ni(100)はそ れぞれPt(111)の3倍及びPt(100)の1.5倍のORR活性 を示している。しかしPt<sub>4ML</sub>/Ni(110)はPt(110)と比較し てORR活性は減少した<sup>6)</sup>。Pt<sub>4ML</sub>/Ni(111)のORR活性が 突出して高くなっているが、この現象はPt<sub>3</sub>Ni(*hkl*)合金 電極の結果と一致している。StamenkovicらはPt<sub>3</sub>Ni(111) 合金上に形成されたPt-skin層における*d*-band center の ダウンシフトがPt<sub>3</sub>Ni(100)やPt<sub>3</sub>Ni(110)よりも大きく ORRを促進する要因であると考察している<sup>7)</sup>。

図2(C)で示した Ar 雰囲気下でのボルタモグラムにお いて Pt<sub>4ML</sub>/Ni(*hkl*)では0.4V(RHE)以下に Ni 表面構造 による依存性が見られず、析出した Pt の表面構造には基 板構造の影響はないと思われる。しかし、ORR 活性に大 きな差が生じており、析出した Pt の電子状態が Ni(111) から強く影響を受けていることを示唆している。よって、 高活性化には表面構造の寄与は小さく、電子状態の変化 が強く ORR を活性している。3.3節でも詳しく述べる が、電子的な相互作用は Ni と結合した Pt が最も影響を受 けるため、ORR 活性サイトは Ni に近接した Pt 原子上で あるといえる。Pt<sub>4ML</sub>/Ni(111)は ORR 活性が向上したが、 耐久性試験を行ったところ、1000 サイクル後には初期活 性から1/3に低下した。

加熱処理した Pt<sub>4ML</sub>/Ni(111)-650 も同様に ORR ボル タモグラム測定及び耐久性試験を行った(図4(B))。初 期活性は Pt<sub>4ML</sub>/Ni(111)の1.7倍及び Pt(111)の5倍の ORR 活性を示した。加熱により島状の Pt が Ni(111) 表 面へ広く分散し活性サイトが増加したためと考えられる。 1000 サイクル後も大幅な活性低下はみられない<sup>15)</sup>。

図5(A)及び5(B)に耐久性試験中のPt<sub>4ML</sub>/Ni(111)及 びPt<sub>4ML</sub>/Ni(111)-650のAr雰囲気下のボルタモグラムを 示す。図5(A)では、Pt<sub>4ML</sub>/Ni(111)は電位サイクルの増 加により水素吸着/脱離による電流値が低下した。1000 サイクル後では、ECSAが30%減少しており、酸化還 元サイクルによりPt原子が溶出していることが明らか となった。一方、図5(B)に示すように、Pt<sub>4ML</sub>/Ni(111) -650は1000サイクル後においてもECSAの減少は見ら れなかった。図5(C)にPt<sub>4ML</sub>/Ni(111)-650、Pt<sub>4ML</sub>/Ni (*hkl*)、及びPt(*hkl*)のORR活性値をまとめる。Pt<sub>4ML</sub>/Ni



- 図4 ORRボルタモグラム、電解液:0.1 M HCIO<sub>4</sub>、走査速度:0.01 Vs<sup>-1</sup>、回転速度:1600 rpm (A)Pt<sub>4ML</sub>/Ni(*hkl*)、(B)耐久性 試験前後におけるPt<sub>4ML</sub>/Ni(111)-650
- Fig. 4 ORR voltammograms of (A) Pt<sub>4ML</sub>/Ni (*hkl*) and (B) Pt<sub>4ML</sub>/Ni (*hkl*) –650 before and after durability test in 0.1 M HCIO<sub>4</sub>. Scanning rate is 0.01 Vs<sup>-1</sup> and rotation rate is 1600 rpm.



- 図5 耐久性試験時のボルタモグラム (A) Pt<sub>4ML</sub>/Ni(*hkl*)、(B) Pt<sub>4ML</sub>/Ni(*hkl*)-650電解液:0.1 M HClO<sub>4</sub>、 走査速度:0.05 Vs<sup>-1</sup>、(C) 0.9 VにおけるORR活性
- $\begin{array}{ll} \mbox{Fig. 5} & \mbox{Cyclic voltammograms of (A) } \mbox{Pt}_{4ML}/Ni\,(111)\,,(B)\,\mbox{Pt}_{4ML}/Ni\,(111)\,-650\,\mbox{ in } 0.1\,\mbox{ M HCIO}_4. \mbox{ Scanning rate is } 0.01\,\ \mbox{Vs}^{-1}, \\ & \mbox{(C) Specific activities for ORR at } 0.9\,\ \mbox{V}. \end{array}$

(111)-650の1000サイクル後のORR 活性の低下は10%以下であるのに対し、Pt<sub>4ML</sub>/Ni(111)は1/3にまで低下しPt(111)よりも低くなった。加熱により修飾したPt原子の安定性にも影響を与えていることが考えられる。

#### 3.3 表面構造に関する考察

Pt4ML/Ni(111)-650の耐久性の向上はNi(111) 基板上へ の Pt-skin や PtNi 表面合金のような Pt-rich なシェル層 の形成によるものである。図6(A)に示すように、Pt原 子はNi基板上にアイランド状に電析してVolmer-Weber モデルを形成する。このとき Ni 基板に隣接した Pt 原子の *d*-band center はダウンシフトし、ORR を活性化させる。 しかし、電位サイクルによる Ni 基板の酸化・溶解に伴っ て Pt 原子は溶出し、ORR 活性は 1/3 にまで低下する。 加熱処理後はボルタモグラム上で Ni の酸化ピークは現れ なかった。図6(B)及び6(C)にPt/Ni(111)-650の考え られる2つの構造モデルを示している。アイランド表面の Pt 原子は表面拡散によって Ni 表面へと移動し、図6(B) に示すような安定な Pt-skin 層を有するコアシェルモデル を形成する可能性がある。Pt 原子が Ni 表面を均一に覆う ことでNi原子に隣接するPt原子の総量が増加するため Pt<sub>4ML</sub>/Ni(111)-650はPt<sub>4ML</sub>/Ni(111)と比較してORR活 性が向上したと考えられる。一方、図6(C)のようなNi (111)上に PtNi 合金層を形成した表面合金モデルも考え られる。Pt 基板上に Sn が析出している場合、アニーリン グ処理によって表面に PtSn 合金層が形成し、更に表面の Sn 原子の溶出が抑えられることが報告されている<sup>14)</sup>。加 熱後の表面構造を明らかにするために、表面 X 線回折法 での実験も取り組んでいる。しかし、X 線回折の測定では、 数十ナノメートルの原子レベルで平滑な表面が必要である が、現在の電解研磨による表面処理方法では困難であり、 十分な精度での回折強度測定に至っていない。今後、表面 処理方法を確立しX線回折測定を行う予定である。

電析と加熱処理による Pt-rich シェル層の形成は卑金属 をコア材料として用いた触媒において、高い活性及び耐久 性を得るために有効であるといえる。

# 4. おわりに

本研究では、電析によって作製した Pt<sub>4ML</sub>/Ni(*hkl*) 上の ORR 活性を調査した。0.9 V(RHE) における ORR 電流 密度は Pt<sub>4ML</sub>/Ni(100) ~ Pt<sub>4ML</sub>/Ni(110) << Pt<sub>4ML</sub>/Ni(111) << Pt<sub>4ML</sub>/Ni(111) - 650 の序列で増加した。Pt<sub>4ML</sub>/Ni(111) は Pt(111) の 3 倍の ORR 活性を示したが、0.6-1.0 V(RHE) を 1000 サイクル印加することで 50 % 以上の活性の低下



図 6 (A) Pt<sub>4ML</sub>/Ni(111)のVolmer-Weberモデル、(B) Pt<sub>4ML</sub>/Ni(111) -650のコアシェルモデル、(C) Pt<sub>4ML</sub>/Ni(111)-650の表面合金 モデル

 $\begin{array}{ll} \mbox{Fig. 6} & (A) \mbox{ Volmer-Weber model of } Pt_{4ML}/Ni\,(111)\,, (B) \mbox{ Core-shell} \\ \mbox{ model and } (C) \mbox{ surface alloy model of } Pt_{4ML}/Ni\,(111)\,-650. \end{array}$ 

がみられ、最表面に溶出しやすい Ni 原子が露出している。 Pt<sub>4ML</sub>/Ni(111) を 650 K で ア ニ ー ル 処 理 を した Pt<sub>4ML</sub>/Ni (111) - 650 は Pt<sub>4ML</sub>/Ni(111) の 1.7 倍の ORR 活性を示し、 また安定な Pt-rich シェル層の形成により 1000 サイクル 後も活性の低下は 10% 以下に抑えられた。

#### 謝辞

本研究は、NEDO「固体高分子形燃料電池実用化推進技術開発/基盤技術開発/低白金化技術」及び「固体高分子 形燃料電池利用高度化技術開発事業/普及拡大化基盤技術 開発/先進低白金化技術開発」の委託を受けて実施され た。また、JSPS 科研費 24651131 の助成を受けた。表面 X 線回折測定は SPring-8 BL 13 XU で実施した(課題番号 2012 A 1208、2015 B 1315)。関係各位に謝意を表します。

参考文献

- J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, R. R. Adzic : Platinum Monolayer Electrocatalysts for O<sub>2</sub> Reduction: Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles, *J. Phys. Chem. B*, 108, 10955 10964 (2004)
- 2) K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, R.R. Adzic: Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes, *Angew. Chem. Int. Ed.*, **49**, 8602–8607 (2010)

- 3) J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic: Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates, *Angew. Chem. Int.Ed.*, 44, 2132–2135(2005)
- 4) V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Norskov: Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure, *Angew. Chem. Int. Ed.*, 45, 2897–2901 (2006)
- 5) N. M. Markovic, R. R. Adzic, B. D. Cahan, E. B. Yeager: Structural effects in electrocatalysis: oxygen reduction on platinum low index singlecrystal surfaces in perchloric acid solutions, *J. Electroanal. Chem.*, **377**, 249–259 (1994)
- 6) N. Hoshi, M. Nakamura, A. Hitotsuyanagi: Active sites for the oxygen reduction reaction on the high index planes of Pt, *Electrochim. Acta*, **112**, 899–904 (2013)
- 7) V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang,
  P. N. Ross, C. A. Lucas, N. M. Markovic : Improved Oxygen Reduction Activity on Pt<sub>3</sub>Ni(111)via Increased Surface Site Availability, *Science*, 315, 493– 497(2007)
- 8) T. Rurigaki, A. Hitotsuyanagi, M. Nakamura, N. Sakai, N. Hoshi: Structural effects on the oxygen reduction reaction on the high index planes of Pt<sub>3</sub>Ni: n(111)-(111) and n(111)-(100) surfaces, *J. Electroanal. Chem.*, **716**, 58-62 (2014)
- 9) Y. Takesue, M. Nakamura, N. Hoshi: Structural effects on the oxygen reduction reaction on the high index planes of Pt<sub>3</sub>Co, *Phys. Chem. Chem. Phys.*, 16, 13774–13779 (2014)
- M. Wakisaka, S. Kobayashi, S. Morishima, Y. Hyuga, D. A. Tryk, M. Watanabe, A. Iiyama, H. Uchida: Unprecedented dependence of the oxygen reduction activity on Co content at Pt Skin/Pt-Co (111)single crystal electrodes, *Electrochem. Commun.*, 67, 47-50 (2016)
- V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic : Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys : Pt-Skin versus Pt-Skeleton Surfaces, *J. Am. Chem. Soc.*, **128**, 8813–8819 (2006)
- 12) D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D.

A. Muller, F. J. DiSalvo, H. D. Abruna: Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, *Nat. Mater.*, **12**, 81–87 (2013)

- T. Wadayama, N. Todoroki, Y. Yamada, T. Sugawara, K. Miyamoto, Y. Iijama: Oxygen reduction reaction activities of Ni/Pt(111)model catalysts fabricated by molecular beam epitaxy, *Electrochem. Commun.*, 12, 1112-1115(2010)
- M. Nakamura, R. Imai, N. Otsuka, N. Hoshi, O. Sakata: Ethanol Oxidation on Well-Ordered PtSn Surface Alloy on Pt(111)Electrode, *J. Phys. Chem. C*, 117, 18139–18143(2013)
- 15) T. Kumeda, H. Kimura, N. Hoshi, M. Nakamura: Activity for the oxygen reduction reaction of the single crystal electrode of Ni modified with Pt, *Electrochem. Commun.*, in-press, DOI: 10.1016/ j.elecom.2016.04.005
- 16) M. D. Macia, J. M. Campina, E. Herrero, J. M. Feliu: On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media, *J. Electroanal. Chem.*, 564, 141–150 (2004)
- A. Kuzume, E. Herrero, J. M. Feliu: Oxygen reduction on stepped platinum surfaces in acidic media, *J. Electroanal. Chem.*, **599**, 333–343 (2007)
- 18) B. D. Cahan, H. M. Villulas: The hanging meniscus rotating disk(HMRD), J. Electroanal. Chem., 307, 263–268(1991)
- 19) H. M. Villullas, M. Lopez Teijelo: The hangingmeniscus rotating disk(HMRD)Part 1. Dependence of hydrodynamic behavior on experimental variables, J. Electroanal. Chem., 384, 25-30(1995)
- 20) H. M. Villullas, M. Lopez Teijelo: The hanging meniscus rotating disk(HMRD)Part 2. Application to simple charge transfer reaction kinetics, *J. Electroanal. Chem.*, 385, 39-44(1995)
- 21) 大丸明正、他:セル評価解析プロトコル、新エネル ギー・産業技術総合開発機構(NEDO)固体高分子形 燃料電池実用化推進技術開発 基盤技術開発「セル 評価解析の共通基盤技術」、1-25(2004)
- 22) M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki, M. Ito: Surface structures at the initial stages in passive film formation on Ni(111)electrodes in acidic electrolytes, *J. Electroanal. Chem.*, **566**, 385– 391 (2004)